MAIN software for density averaging, model building, structure refinement and validation

نویسنده

  • Dušan Turk
چکیده

MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model building, refinement and validation

The CCP4 Study Weekend 2011 was held at the University of Warwick on the 6–7 January. Following a long established tradition of discussing at the Study Weekend the most important crystallographic topics, the choice for 2011 was the 'Model building, refinement and validation' triple bill. As a result of the extraordinary efforts of instrumentation and software developers, macromolecular crystall...

متن کامل

Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias

A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'iterative-build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based...

متن کامل

Computers in Analysis, Molecular Modelling and Molecular Design C163

Refining an initial protein model to its final structure is usually composed of rounds of refinement performed by programs such as CNS and REFMAC, and manual model modification that includes linking and extending fragments, and fitting the ill matched residues of model by using the computer graphics program such as O. The manual model modification requires expertise of crystallography to recogn...

متن کامل

Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-...

متن کامل

Features and development of Coot

Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations such as idealization, real-space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers and Ramachandran idealization. Furthermore, tools are provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2013